

Objective

Protocol 2 measures the presence of specific cargo using a fluorescent marker, such as a vTag[™] antibody. EV surface cargo. This protocol includes the necessary controls (buffer-only, reagent-only, antigen-negative control, unstained control, positive control) to establish surface cargo staining specificity.

Materials

- a. vFRed[™] Membrane Stain (100x)
- b. VFC[™] Staining Buffer, 2 mL
- c. Lipo100[™] Standard (10x)
- d. EV standard (10x)
- e. Fluorescent antibody (FL mAb, 10x)
- f. EV lysing solution
- g. V-bottom plate

Procedure

Prepare Working Solutions

- Prepare 200 uL 10x vFRed[™] working solution (5 uL per well) by adding 20 uL vFRed[™] (100x) to 180 uL Staining Buffer (for 4 samples plus controls, in duplicate)
- 2. Prepare 10x Vesicle Lysing Solution by adding 5 uL to 495 uL Staining Buffer (500 uL)

Prepare Samples

- Dilute sample to between ~1x10⁶ and 1x10⁸/uL in Staining Buffer in a microfuge tube and mix well. Note: For new samples with unknown concentrations, see Protocol 1.
- Place Staining Buffer into individual wells (see Table 2.1 and Protocol 2 Plate Map).
- 3. Add 5 uL of FL mAb (or buffer for no mAb samples)
- 4. Add 5 uL of diluted samples and standards to designated wells.
- Add 5 uL of 10x vFRed[™] to each well, mix by pipetting up and down.
- 6. Incubate for 60 minutes in the dark at RT.

Table 2.1. Stainin	g	vFRed™				vFRed [™] +Marker					
	Row	Buffer	Marker	Sample	vFRed	Total	Buffer	Marker	Sample	vFRed	Total
Buffer only	А	50	0	0	0	50	45	0	0	0	50
Buffer +reagents	В	45	0	0	5	50	40	5	0	5	50
Lipo100™	С	40	0	5	5	50	35	5	5	5	50
EV standard	D	40	0	5	5	50	35	5	5	5	50
Sample 1	Е	40	0	5	5	50	35	5	5	5	50
Sample 2	F	40	0	5	5	50	35	5	5	5	50
Sample 3	G	40	0	5	5	50	35	5	5	5	50
Sample 4	Н	40	0	5	5	50	35	5	5	5	50

Materials to be provided by User

- a. Gloves
- Single channel and multichannel pipettes (5 uL 300 uL)
- c. Pipette tips

1

Dilute and Read

- 7. Dilute the staining reaction according to Table 2.2.
 - a. Add the indicated amount of Staining Buffer to Columns 5-12
 - b. Transfer the indicated amount of stained sample from Columns 1-4 to Columns 5-8, and mix well.
 - c. Transfer the indicated amount of the Dilution
 1 samples in Columns 5-8 to Columns 9-12,
 and mix well. [Not required for ImageStream]
 - d. Run the wells in Columns 8-12 at the indicated sample flow rate for 120 seconds each.

Table 2.2 Po					
Reagent	CytoFlex,	CellStream	ImageStream		
	Aurora				
Staining	50 uL	50 uL	50 uL		
Dilution 1	$8 \mu L \rightarrow$	$8 \mu\text{L} \rightarrow$	$5 \mu\text{L} ightarrow 145$		
	245 uL	105 uL	uL		
Dilution 2	$8 \mu L \rightarrow$	$8 \mu\text{L} \rightarrow$			
	245 uL	105 uL			
Dilution	1000	200	30		
factor					
Run	High	Slow	Fixed		
	60 uL/min	3.7 uL/min			

Detergent Sensitivity

- 1. After the post-stain dilutions have been performed (Step 7), add 5 uL 10x Vesicle Lysing Solution to desired Staining Wells (eg wells A1-D4) and incubate 10 minutes.
- 2. Dilute and read as above.

Protocol 2 Plate Map

Data Analysis

- Open the vFC Protocol 2 Analysis layout with FCS Express or FCS Express Reader.
 Note: The vFC Analysis Layout and Appendix A below have additional notes and tips to guide the data analysis.
- 2. Load the appropriate Vesicle Size Calibration file (*.fcf) into the Surface Area parameter via Tools>Transforms>Parameter Math (See Protocol 0.1 and/or 0.2).
- 3. Load the appropriate fluorescence intensity Channel Calibration file (*.cal) via Tools>Channel Calibration>Load (see Protocol 0.1 and/or 0.3).
- 4. Load the appropriate Compensation file (*.compensation) via Tools>Compensation and Unmixing>Created manually (see Protocol 0.4)
- 5. From the Data List, click the Add File (+) and select the Protocol 2 data files.
- 6. Order the files by time (by clicking on the <u>\$ETIM</u> column in the Data List) and select the first file.
- 7. Inspect the negative and positive controls and adjust gates if necessary
 - a. Select a **<u>Buffer +vFRed</u>** data file and <u>Change Data On All Plots</u>. Inspect the Gating Plots. Adjust Time Gate, Pulse Gate, and Vesicle Gate as needed to minimize low- and high-scatter backgrounds.
 - b. Select a <u>Lipo100</u> data file and <u>Change Data On All Plots</u>. Inspect the Gating Plots. Adjust Gates as needed to select vFRed-positive events.
 - c. Select a <u>Sample</u> data file and <u>Change Data On All Plots</u>. Inspect the Gating Plots. Adjust Gates as needed to select vFRed-positive events and eliminate background events. Inspect the Report Plots. Adjust the Fluorescence Gates to the edge of the negative (unstained) sample distribution so as to gate on Positive events.
 - d. Select a Lipo100 +TS Mix PE data file and Change Data On All Plots. Inspect the Gating Plots. Adjust Gates as needed to select vFRed-positive events and eliminate background events. Note any positive fluorescence events that may be due to antibody/fluorophore aggregates.
 - e. Select an <u>EV Std +TS Mix PE</u> data file and <u>Change Data On All Plots</u>. Adjust the Fluorescence Gates to the edge of the negative (unstained) sample distribution so as to gate on Positive events. Note the number and brightness of positive events.
 - f. Select and inspect **<u>Sample</u>** data files.
- 8. Export plots and statistics via Batch Processing (Batch>Run)
- 9. Copy the Batch Output data into the Data field of the vFC Protocol 2 Analysis template.

Developed, Manufa buzas.edit@med.semmelweis-univ.huctured, and Distributed By

Cellarcus Biosciences, Inc.

Telephone: +1 (858) 239-2100 Customer Care: <u>cellarcus@cellarcus.com</u> Technical Support: <u>technical@cellarcus.com</u>

3

Measuring EV Surface Cargo

Example Data

4

Notes