

For vesicle detection and size calibration.

Objective

To test performance and calibrate the instrument for vFC™ counting and sizing. For Protocol 0 on an instrument that is appropriately configured, we would expect to see approximately 50,000 events with a diameter distribution that ranges between $^{\sim}50 - 300$ nm, and a median of 100-130 nm and mean of $^{\sim}120$ -150 nm.

Materials

- a. Gloves
- b. Staining Buffer, 8 mL
- c. Lipo100[™] Standard (10x)
- d. vFRedTM membrane stain (100x)
- e. Microwell plate

Procedure

1. Wear gloves for all manipulation of samples and reagents.

Prepare Working Solution

2. Prepare 10x vFRedTM working solution by adding 8 μL vFRed (100x) to 72 μL Staining Buffer.

Prepare Samples

- 3. Prepare EV samples (See Protocol O Plate Map below):
 - a. Pipet 40 µL of Staining Buffer into wells A1-H1
 - b. Add 5 μL Lipo100™ (10x) to wells C1, D1, G1, and H1.
 - c. Add 5uL of staining buffer into wells A1, B1, E1, and F1
- 4. Add 5 μL 10x vFRedTM to all wells except A1 and E1.
- 5. Mix well, incubate 1 hour at RT in the dark.

Table 1. Stalling reactions				
CytoFlex	CellStream			
40 uL	35 uL			
5 uL	10 uL			
5 uL	5 uL			
50 uL	50 uL			
	CytoFlex 40 uL 5 uL 5 uL			

Table 1 Staining reaction

Dilute and Read

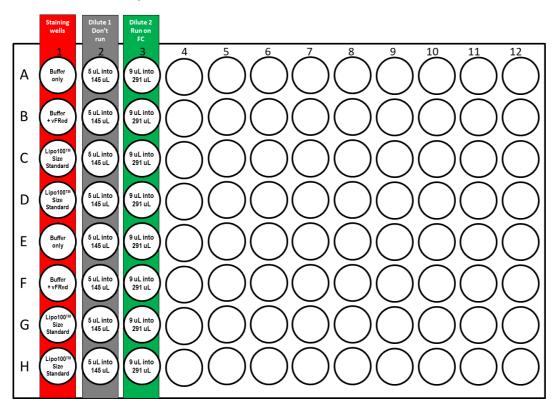
6. Dilute the staining reaction according to Table 2.

For the CytoFlex®

- a. Add 145ul of staining buffer to row 2 and 291uL of staining buffer to row 3.
- b. Transfer 5 µL of stained sample (row 1) into a well containing 145 µL of Staining Buffer, mix well by pipetting up and down (this will be dilution 1). Be careful to avoid foaming.
- c. Transfer 9 μ L of Dilution 1 into a well containing 291 μ L of Staining Buffer, mix well (this will be dilution 2).
- d. Run Dilution 2 on CytoFlex for fixed time (120 seconds) at fixed flow rate (High, 60 μL/min)

ı	=_	r	+ŀ	16	CA	llCt ₁	rea	m®
- [-()		u	10		11.311	וכמ	

- e. Add 298.5ul of staining buffer to row 2.
- f. Transfer 1.5 μL of stained sample (row 1) into a well containing 298.5 μL of Staining Buffer, mix well by pipetting up and down. Be careful to avoid foaming.
- g. Run on CellStream for fixed time (120 seconds) at fixed flow rate (Low, 3.66 μL/min)


Table 2. Post-stain dilution and run							
Reagent	CytoFlex	CellStream					
Staining	50 uL	50 uL					
Dilution 1	5 μL →	1.5 μL →					
	145 uL	300 uL					
Dilution 2	9 μ L \rightarrow						
	291 uL						
Dilution	1000	200					
factor							
Run	High	Slow					
speed	60 uL/min	3.7 uL/min					

For vesicle detection and size calibration.

Data Analysis

- 1. Open the vFC[™] Analysis layout with FCS Express Reader.
 - Note: The vFC Analysis Layout and Chapter 4 below have additional notes and tips to guide the data analysis.
- 2. From the Data List, click the Add File (+) and navigate to the data directory and select the Protocol 0 data files).
 - a. Select a **Buffer + vFRed™** data file and click Change Data On All Plots. Inspect the Gating Plots. Adjust Time Gate, Pulse Gate, and Vesicle Gate as needed to minimize low- and high-scatter backgrounds.
 - b. Select a Lipo100™ data file and click Change Data On All Plots. Inspect the Gating Plots. Adjust Gates as needed to select vFRed™-positive events.
- 3. Run the Vesicle Calibration Tool or Copy the Lipo100 vFRed™ intensity data to the clipboard, and paste into the vFC Size Calibration Tool located under the Data Analysis tab at www.cellarcus.com/products/vfc-base-kit. Enter the parameters from calibration results into the Surface Area parameter via Tools>Transforms>Parameter Math.
- 4. Inspect the resulting size distribution. The Lipo100 vesicle estimated size should range between ~50 300 nm, and a median 100-130 nm and mean of ~120-150 nm.
- 5. Export plots and statistics via Batch Processing.

Protocol O Plate Map

Developed, Manufactured, and Distributed By

Cellarcus Biosciences, Inc.

Telephone: +1 (858) 239-2100

Customer Care: cellarcus@cellarcus.com Technical Support: technical@cellarcus.com

Notes

www.cellarcus.com